3 years ago

Engineering a carbonyl reductase for the scalable preparation of (S)‐3‐Cyclopentyl‐3‐hydroxypropanenitrile, the key building block of ruxolitinib

Yunfeng Cui, Liangyan Zhu, Xi Chen, Jinhui Feng, Qiaqing Wu, Dunming Zhu
( S )- 3-Cyclopentyl-3-hydroxypropanenitrile is the key precursor for the synthesis of ruxolitinib. The bioreduction of 3-cyclopentyl-3-ketopropanenitrile ( 1a ) offers an attractive method to access this important compound. A carbonyl reductase (PhADH) from Paraburkholderia hospita catalyzed the reduction of 1a giving the ( S )-alcohol ( 1b ) with 85% ee. Rational engineering of PhADH resulted in a double mutant H93C/A139L, which enhanced the enantioselectivity from 85% to >98%, as well as a 6.3-fold improvement in the specific activity. The bioreduction of 1a was performed at 200 g/L (1.5 M) substrate concentration, leading to isolation of ( S )- 1b in 91% yield. Similarly, using this mutant enzyme 3-cyclohexyl-3-ketopropanenitrile ( 2a) and 3-phenyl-3-ketopropanenitrile ( 3a ) were reduced at high concentration affording the corresponding alcohols in >99% ee, and 90% and 92% yield, respectively. The results showed that the variant H93C/A139L was a powerful biocatalyst for reduction of β-substituted-β-ketonitriles.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.