2 years ago

Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin

Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin
Mozhgan Taherizadeh, Shohreh Jahani, Mehran Moradalizadeh, Mohammad Mehdi Foroughi

The current effort introduces a facile construction of peony-like CuO:Tb3+ nanostructure (P-L CuO:Tb3+ NS), whose characterization was determined via techniques of X-ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. We investigated ofloxacin, pefloxacin and gatifloxacin oxidation electrochemically on P-L CuO:Tb3+ NS-modified glassy carbon electrode (P-L CuO:Tb3+ NS/GCE), the results of which revealed the irreversible oxidation of drugs through a two-electron oxidation process. An admirable resolution was found for this modified electrode between voltammetric peaks of ofloxacin, pefloxacin and gatifloxacin, suggesting its appropriateness for simultaneous detection of these drugs in pharmaceutical media. In addition, our nanostructure synergistically influenced the electro-catalytic oxidations of these three compounds. Differential pulse voltammetric measurements of ofloxacin, pefloxacin and gatifloxacin through our sensor showed a limit of detection of 1.9, 2.3 and 1.2 nM a as well as a linear dynamic range between 0.01 and 800.0 μM in phosphate buffered solution (0.1 M, pH = 6.0), respectively. Moreover, as-fabricated sensor could successfully co-detect these drugs in real serum and tablets specimens. In addition, since we use animal foods such as milk it is very important to detect their fluoroquinolone residues. For this purpose, the proposed sensor was tested to determine the residues of ofloxacin, pefloxacin and gatifloxacin in milk.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S0039914022010128

DOI: 10.1016/j.talanta.2022.124216

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.