2 years ago

Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers

Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers
Anton Savitsky, Jingfu Zhang, Dieter Suter
Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information. Realization of this potential requires effective tools for controlling the spin degree of freedom by microwave (mw) magnetic fields. In this work, we present a planar microwave resonator optimized for microwave-optical double resonance experiments on single NV centers in diamond. It consists of a piece of wide microstrip line, which is symmetrically connected to two 50 Ω microstrip feed lines. In the center of the resonator, an Ω-shaped loop focuses the current and the mw magnetic field. It generates a relatively homogeneous magnetic field over a volume of 0.07 × 0.1 mm3. It can be operated at 2.9 GHz in both transmission and reflection modes with bandwidths of 1000 and 400 MHz, respectively. The high power-to-magnetic field conversion efficiency allows us to produce π-pulses with a duration of 50 ns with only about 200 and 50 mW microwave power in transmission and reflection, respectively. The transmission mode also offers capability for efficient radio frequency excitation. The resonance frequency can be tuned between 1.3 and 6 GHz by adjusting the length of the resonator. This will be useful for experiments on NV-centers at higher external magnetic fields and on different types of optically active spin centers.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.