2 years ago

Challenges in speeding up solid-state battery development

Challenges in speeding up solid-state battery development
Jürgen Janek, Wolfgang G. Zeier
Recent worldwide efforts to establish solid-state batteries as a potentially safe and stable high-energy and high-rate electrochemical storage technology still face issues with long-term performance, specific power and economic viability. Here, we review key challenges that still involve the need for fast-conducting solid electrolytes to provide sufficient transport in composite cathodes. In addition, we show that high-performance anodes together with protection concepts are paramount to establish dense high-energy solid-state batteries and that lithium-based solid-state batteries as well as metal anodes may not be the ultimate solution. We further discuss that diversity in terms of materials, research teams and approaches is key to establish long-term solid-state batteries. About ten years after the first ground-breaking publication of lithium solid electrolytes with an ionic conductivity higher than that of liquid electrolytes, it is time to realistically address the remaining key challenges for full-scale commercialization, cell performance and implementation.

Publisher URL: https://www.nature.com/articles/s41560-023-01208-9

DOI: 10.1038/s41560-023-01208-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.