2 years ago

Breaking the temporal and frequency congestion of LiDAR by parallel chaos

Breaking the temporal and frequency congestion of LiDAR by parallel chaos
Ruixuan Chen, Haowen Shu, Bitao Shen, Lin Chang, Weiqiang Xie, Wenchao Liao, Zihan Tao, John E. Bowers, Xingjun Wang
The rising demand for high scanning accuracy and resolution in sensors for self-driving vehicles has led to the rapid development of parallelization in light detection and ranging (LiDAR) technologies. However, for the two major existing LiDAR categories—time-of-flight and frequency-modulated continuous wave—the light sources and measurement principles currently used for parallel detection face severe limitations from time- and frequency-domain congestion, leading to degraded measurement performance and increased system complexity. In this work we introduce a light source—the chaotic microcomb—to overcome this problem. This physical entropy light source exhibits naturally orthogonalized light channels that are immune to any congestion problem. Based on this microcomb state, we demonstrate a new type of LiDAR—parallel chaotic LiDAR—that is interference-free and has a greatly simplified system architecture. Our approach also enables the state-of-the-art ranging performance among parallel LiDARs: millimetre-level ranging accuracy and millimetre-per-second-level velocity resolution. Combining all of these desirable properties, this technology has the potential to reshape the entire LiDAR ecosystem.

Publisher URL: https://www.nature.com/articles/s41566-023-01158-4

DOI: 10.1038/s41566-023-01158-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.