a year ago

Low-temperature curable TiO2 sol for separator and HTM-free carbon-based perovskite solar cells

Low-temperature curable TiO2 sol for separator and HTM-free carbon-based perovskite solar cells
Reshma Dileep K, Thulasi Raman Elumalai, Easwaramoorthi Ramasamy, S. Mallick, T. N. Rao, Ganapathy Veerappan
In this study, we present the development of an ambient temperature curable TiO2 mesoporous layer for perovskite solar cells (PSCs), eliminating the need for a binder and enabling the use of environmentally friendly solvents. The TiO2 layer was synthesized via a hydrothermal method followed by minimal post-processing techniques. The resulting anatase TiO2 sol was optimized to be compatible with various coating techniques such as spin coating, dip coating, and spray coating, allowing for its application at sub-50 °C temperatures. A comprehensive investigation was conducted to study the effects of annealing temperatures ranging from 50 °C to 500 °C on the crystallographic, morphological, electrical, and surface properties of the TiO2 films derived from the TiO2 sol. Contact angle measurements were employed to analyse the change in surface energy resulting from different sintering temperatures and its influence on the growth of the perovskite film on the TiO2 films. To evaluate the performance of the TiO2 electron transport layers (ETLs) annealed at different temperatures, carbon-based perovskite solar cells (CPSCs) were fabricated. The results revealed that the CPSCs utilizing the TiO2 ETL annealed at 50 °C exhibited the highest efficiency of 11.1%, accompanied by an open circuit voltage of 0.98 V and a current density of 22.3 mA cm−2. Notably, the developed TiO2 ETL outperformed the commercial TiO2 ETL sintered at 500 °C in the same device architecture. These findings demonstrate the potential of the ambient temperature curable TiO2 ETL for large-area deposition and flexible PSCs.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.