5 years ago

Experimental Characterization of Two-Particle Entanglement through Position and Momentum Correlations. (arXiv:1807.06405v2 [cond-mat.quant-gas] UPDATED)

Andrea Bergschneider, Vincent M. Klinkhamer, Jan Hendrik Becher, Ralf Klemt, Lukas Palm, Gerhard Zürn, Selim Jochim, Philipp M. Preiss
Quantum simulation is a rapidly advancing tool to gain insight into complex quantum states and their dynamics. Trapped ion systems have pioneered deterministic state preparation and comprehensive state characterization, operating on localized and thus distinguishable particles. With ultracold atom experiments, one can prepare large samples of delocalized particles, but the same level of characterization has not yet been achieved. Here, we present a method to measure the positions and momenta of individual particles to obtain correlations and coherences. We demonstrate this with deterministically prepared samples of two interacting ultracold fermions in a coupled double well. As a first application, we use our technique to certify and quantify different types of entanglement.

Publisher URL: http://arxiv.org/abs/1807.06405

DOI: arXiv:1807.06405v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.