5 years ago

Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: unexpected findings help to explain dose- and diet- specific phenomena

Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: unexpected findings help to explain dose- and diet- specific phenomena
Sen Yan, Dezhen Wang, Miaomiao Teng, Zhiyuan Meng, Jin Yan, Ruisheng Li, Ming Jia, Sinuo Tian, Zhiqiang Zhou, Wentao Zhu

The environmental health risks of a new type of organophosphate flame retardant, 2-ethylhexyl diphenyl phosphate (EHDPHP), which is present in large quantities in various Nordic foods, have attracted the attention of scientists recently. In this study, the metabolic homeostasis of low-fat diet (LFD) and high-fat diet (HFD) fed male mice offspring was assessed after perinatal exposure to two doses (30 μg/kg bw/day and 300 μg/kg bw/day) of EHDPHP. Perinatal exposure to EHDPHP resulted in weight changes in male mice offspring, altered glucose tolerance and induced liver damage, and surprisingly these changes were dose- and diet- specific. Then the 1H NMR-based metabolomics, 16S rRNA sequencing, and qRT-PCR techniques were used to explore the mechanisms of these specific changes. The results indicate that the increase in short-chain fatty acids and the increase in Clostridium in the high-dose group may be responsible for the dose-specificity, while the attenuation of the purine metabolic pathway and the decrease in glutamine levels in the HFD group are accountable for the diet-specificity. In addition, down-regulation of PPARG (peroxisome proliferator-activated receptor gamma) gene expression levels might have caused the decrease in body weight in the H + HFD (high dose exposure with HFD feeding) group. Over all, these results elucidated the effects of dosage and diet on the toxicology of EHDPHP.

Shorter version abstract

The environmental health risks of a new type of organophosphate flame retardant, EHDPHP, which is present in large quantities in various Nordic foods, have attracted the attention of scientists recently. In this study, the metabolic homeostasis of LFD and HFD fed male mice offspring was assessed after perinatal exposure to two doses (30 μg/kg bw/day and 300 μg/kg bw/day) of EHDPHP. Perinatal exposure to EHDPHP resulted in weight changes in male mice offspring, altered glucose tolerance and induced liver damage, and surprisingly these changes were dose- and diet- specific. Then the 1H NMR-based metabolomics, 16S rRNA sequencing, and qRT-PCR techniques were used to explore the mechanisms of these specific changes. The results indicate that the increase in short-chain fatty acids and the increase in Clostridium in the high-dose group may be responsible for the dose-specificity, while the attenuation of the purine metabolic pathway and the decrease in glutamine levels in the HFD group are accountable for the diet-specificity. In addition, down-regulation of PPARG gene expression levels might have caused the decrease in body weight in the H + HFD (high dose exposure with HFD feeding) group. Over all, these results elucidated the effects of dosage and diet on the toxicology of EHDPHP.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S0304389420300200

DOI: 10.1016/j.jhazmat.2020.122034

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.