4 years ago

Applying GPGPU to Recurrent Neural Network Language Model based Fast Network Search in the Real-Time LVCSR. (arXiv:2007.11794v1 [cs.CL])

Kyungmin Lee, Chiyoun Park, Ilhwan Kim, Namhoon Kim, Jaewon Lee
Recurrent Neural Network Language Models (RNNLMs) have started to be used in various fields of speech recognition due to their outstanding performance. However, the high computational complexity of RNNLMs has been a hurdle in applying the RNNLM to a real-time Large Vocabulary Continuous Speech Recognition (LVCSR). In order to accelerate the speed of RNNLM-based network searches during decoding, we apply the General Purpose Graphic Processing Units (GPGPUs). This paper proposes a novel method of applying GPGPUs to RNNLM-based graph traversals. We have achieved our goal by reducing redundant computations on CPUs and amount of transfer between GPGPUs and CPUs. The proposed approach was evaluated on both WSJ corpus and in-house data. Experiments shows that the proposed approach achieves the real-time speed in various circumstances while maintaining the Word Error Rate (WER) to be relatively 10% lower than that of n-gram models.

Publisher URL: http://arxiv.org/abs/2007.11794

DOI: arXiv:2007.11794v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.