4 years ago

Water, Vol. 12, Pages 2086: Annual Runoff Forecasting Based on Multi-Model Information Fusion and Residual Error Correction in the Ganjiang River Basin

Water, Vol. 12, Pages 2086: Annual Runoff Forecasting Based on Multi-Model Information Fusion and Residual Error Correction in the Ganjiang River Basin
Peibing Song, Weifeng Liu, Jiahui Sun, Chao Wang, Lingzhong Kong, Zhenxue Nong, Xiaohui Lei, Hao Wang
Accurate forecasting of annual runoff time series is of great significance for water resources planning and management. However, considering that the number of forecasting factors is numerous, a single forecasting model has certain limitations and a runoff time series consists of complex nonlinear and nonstationary characteristics, which make the runoff forecasting difficult. Aimed at improving the prediction accuracy of annual runoff time series, the principal components analysis (PCA) method is adopted to reduce the complexity of forecasting factors, and a modified coupling forecasting model based on multiple linear regression (MLR), back propagation neural network (BPNN), Elman neural network (ENN), and particle swarm optimization-support vector machine for regression (PSO-SVR) is proposed and applied in the Dongbei Hydrological Station in the Ganjiang River Basin. Firstly, from two conventional factors (i.e., rainfall, runoff) and 130 atmospheric circulation indexes (i.e., 88 atmospheric circulation indexes, 26 sea temperature indexes, 16 other indexes), principal components generated by linear mapping are screened as forecasting factors. Then, based on above forecasting factors, four forecasting models including MLR, BPNN, ENN, and PSO-SVR are developed to predict annual runoff time series. Subsequently, a coupling model composed of BPNN, ENN, and PSO-SVR is constructed by means of a multi-model information fusion taking three hydrological years (i.e., wet year, normal year, dry year) into consideration. Finally, according to residual error correction, a modified coupling forecasting model is introduced so as to further improve the accuracy of the predicted annual runoff time series in the verification period.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.