4 years ago

[ASAP] Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment

[ASAP] Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment
Hui Li, Wei Zhang
Multi-junction (tandem) solar cells (TSCs) consisting of multiple light absorbers with considerably different band gaps show great potential in breaking the Shockley–Queisser (S–Q) efficiency limit of a single junction solar cell by absorbing light in a broader range of wavelengths. Perovskite solar cells (PSCs) are ideal candidates for TSCs due to their tunable band gaps, high PCE up to 25.2%, and easy fabrication. PSCs with high PCEs are typically fabricated via a low temperature solution method, which are easy to combine with many other types of solar cells like silicon (Si), copper indium gallium selenide (CIGS), narrow band gap PSCs, dye-sensitized, organic, and quantum dot solar cells. As a matter of fact, perovskite TSCs have stimulated enormous scientific and industrial interest since their first development in 2014. Significant progress has been made on the development of perovskite TSCs both in the research laboratories and industrial companies. This review will rationalize the recent exciting advancement in perovskite TSCs. We begin with the introduction of the historical development of TSCs in a broader context, followed by the summary of the state-of-the-art development of perovskite TSCs with various types of device architectures. We then discuss the strategies for improving the PCEs of perovskite TSCs, including but not limited to the design considerations on the transparency of perovskite absorbers and metal electrodes, protective layers, and recombination layers (RLs)/tunnel junctions (TJs), with a particular focus on the band gap tuning and thickness adjustment of active layers. We subsequently introduce a range of measurement techniques for the characterization of perovskite TSCs. We also cover other core issues related to the large-scale applications and commercialization. Finally, we offer our perspectives on the future development of emerging photovoltaic technologies as the device performance enhancement and cost reduction are central to almost any type of solar cell applied in the perovskite TSCs. This article has not yet been cited by other publications.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.