4 years ago

IJERPH, Vol. 17, Pages 6817: Relationship between Skin Temperature, Electrical Manifestations of Muscle Fatigue, and Exercise-Induced Delayed Onset Muscle Soreness for Dynamic Contractions: A Preliminary Study

IJERPH, Vol. 17, Pages 6817: Relationship between Skin Temperature, Electrical Manifestations of Muscle Fatigue, and Exercise-Induced Delayed Onset Muscle Soreness for Dynamic Contractions: A Preliminary Study
Jose I. Priego-Quesada, Carlos De la Fuente, Marcos R. Kunzler, Pedro Perez-Soriano, David Hervás-Marín, Felipe P. Carpes
Delayed onset muscle soreness (DOMS) indicates the presence of muscle damage and impairs force production and control. Monitorization of DOMS is useful to improving recovery intervention plans. The magnitude of DOMS may relate to muscle fatigue, which can be monitored by surface electromyography (EMG). Additionally, growing interest has been expressed in determining whether the skin temperature over a muscle group during exercise to fatigue could be a non-invasive marker for DOMS. Here we determine whether skin temperature and manifestations of muscle fatigue during exercise are correlated and can predict DOMS after concentric–eccentric bicep curl exercises. We tested 10 young adults who performed concentric–eccentric bicep curl exercises to induce muscle damage in the biceps brachialis to investigate the relationship between skin temperature and fatigue during exercise and DOMS after exercise. Muscle activation and skin temperature were recorded during exercise. DOMS was evaluated 24 h after exercise. Data analysis was performed using Bayesian regression models with regularizing priors. We found significant muscle fatigue and an increase in skin temperature during exercise. DOMS was observed 24 h after exercise. The regression models showed no correlation of changes in skin temperature and muscle fatigue during exercise with DOMS 24 h after exercise. In conclusion, our preliminary results do not support a relationship between skin temperature measured during exercise and either muscle fatigue during exercise or the ability to predict DOMS 24 h after exercise.

Publisher URL: https://www.mdpi.com/1660-4601/17/18/6817

DOI: 10.3390/ijerph17186817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.