4 years ago

Study of a robotic system to detect water leakage and fuel debris -System proposal and feasibility study of visual odometry providing intuitive bird's eye view-

Zhenyu Wang, Gen Endo, Masashi Takahashi, Hiroyuki Nabae, Koichi Suzumori, Tsuzuki Nobuyoshi, Hideharu Takahashi, Kazushi Kimoto, Tomonori Ihara, Hiroshige Kikura

To obtain the necessary information on fuel debris and water leakages during the decommissioning task of the Fukushima Daiichi Nuclear Power Plant, an ultrasonic-based method was proposed for future internal investigation of the primary containment vessel (PCV). In this article, we describe the rotatable winch mechanism and visual localization method, which were used to aid the investigation. We used the rotatable winch mechanism to adjust the height and orientation of the ultrasonic sensor and localized the robot with cameras to localize the sensor, to provide assisting information for data combination. We studied the feasibility of the conventional visual odometry method for application to the situation and performed localizing accuracy evaluation experiments with a mobile robotic platform prototype. The results showed that the visual odometry method could generate intuitive bird's-eye-view maps, and provided an average error rate of 35 mm/1500 mm, which met the required maximum error rate of 100 mm/1500 mm for the grating movement. Experiments were also conducted with adjustable parameter ranges that could provide the required accuracy.

Publisher URL: https://www.researchsquare.com/article/rs-29524/latest

DOI: 10.21203/rs.3.rs-29524/v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.