3 years ago

[ASAP] Assembly of Chiral Cluster-Based Metal–Organic Frameworks and the Chirality Memory Effect during their Disassembly

[ASAP] Assembly of Chiral Cluster-Based Metal–Organic Frameworks and the Chirality Memory Effect during their Disassembly
Guocheng Deng, Boon K. Teo, Nanfeng Zheng
Many metal clusters are intrinsically chiral but are often synthesized as a racemic mixture. By taking chiral Ag14(SPh(CF3)2)12(PPh3)4(DMF)4 (Ag14) clusters with bulky thiolate ligands as an example, we demonstrate herein an interesting assembly disassembly (ASDS) strategy to obtain the corresponding, optically pure crystals of both homochiral enantiomers, R-Ag14m and S-Ag14m. The ASDS strategy makes use of two bidentate linkers with different chiral configurations, namely, (1R,2R,N1E,N2E)-N1,N2-bis(pyridin-3-ylmethylene)cyclohexane-1,2-diamine (LR) and the corresponding chiral analogue LS. For comparison, we also use the racemic mixture of equimolar of LR and LS (LRS). Three three-dimensional (3D) Ag14-based metal–organic frameworks (MOFs) were characterized by X-ray crystallography to be [Ag14(SPh(CF3)2)12(PPh3)4(LR)2]n (Ag14-LR), [Ag14(SPh(CF3)2)12(PPh3)4(LS)2]n (Ag14-LS), and [Ag14(SPh(CF3)2)12(PPh3)4(LRS)2]n (Ag14-LRS), respectively. As expected, the building blocks in Ag14-LR or Ag14-LS are homochiral R-Ag14 or S-Ag14, respectively. In contrast, Ag14-LRS is achiral and crystallizes with a diamond-like structure containing alternate R-Ag14 and S-Ag14 clusters. During the assembly process, the racemic Ag14 clusters were converted to homochiral building blocks, namely, R-Ag14 for Ag14-LR and S-Ag14 for Ag14-LS. Subsequently, the chiral linkers were removed from the crystals of Ag14-LR and Ag14-LS via hydrolysis with water, and from the disassembled solid material Ag14-DR and Ag14-DS, optically pure enantiomers R-Ag14m and S-Ag14m were obtained. It is hoped that this simple assembly strategy can be used to construct cluster-based chiral assemblage materials and that the subsequent disassembly protocol can be used to obtain optically pure chiral cluster molecules from as-prepared racemic mixtures. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c03251. Figures of 1H and 13C NMR spectra, CD spectra, crystal structures, tetrahedron structures, PXRD, UV–vis spectra, fluorescence spectra, CPL spectra, packing diagram, intensity changes, FT-IR spectra, and Arrhenius plot ln(k) vs 1/T and tables of crystal data and structure refinement (PDF) This article has not yet been cited by other publications.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.