3 years ago

A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance

A melamine‐based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance
Vahid Vatanpour, Shadi Paziresh

This research reported developing a polyethersulfone (PES) membrane using covalent organic frameworks (COFs) nanoparticle with a mean dimension of 30 nm. The SNW-1 (Schiff-based network) COF was synthesized using precursors of melamine and terephthalic acid and then characterized by XRD, SEM, TEM, and FTIR analyses. The influence of different loadings of the COF was evaluated on the permeability, antifouling behavior and dye/salt rejection. The addition of SNW-1 caused a reduction in surface roughness and an improvement in hydrophilicity of the nanocomposite membranes, which improved their flux and fouling resistance considerably. The improvement of water flux, 2.6 times, was observed by adding 0.5 wt% COF to the membrane matrix. The 0.5 wt% COF membrane presented the best water permeability, 38.9 L/m2 h bar BSA solution flux, dye rejection of 98.7% for Reactive Green 19 and 62.6% for Reactive yellow 39, 52.9% Na2SO4 and 24.5% NaCl salt rejections. Zeta potential and salt rejection trend indicated a negative surface charge on the nanocomposite membrane. Fouling experiments by BSA protein solution exhibited that the FRR reached 88.9% for 2 wt% COF membrane. Thus, employing SNW-1 into PES matrix resulted in a promising nanofiltration membrane for dye separation and moderate salt separation with suitable antifouling properties.

Publisher URL: https://onlinelibrary.wiley.com/doi/10.1002/app.51428

DOI: 10.1002/app.51428

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.